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Introduction

• Large arrays of small rockets are 
the new standard
• Interactions between nearby 

rockets produce new problems
• Simulation resolution is limited 

by available GPU memory
• More resolution = more rockets
• Existing tools for shock-laden 

flows are poorly conditioned at 
lower precision
• Lower precision and linear 

numerics are faster

3
Credit: SpaceX



Timeline of biggest CFD simulations
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2013[1]

(GB Winner)

[1] Rossinelli et al. (2013) Proceedings of SC ’13
[2] Yeung et al. (2025) CPC
[3] Sathyanarayana et al. (2025) JPDC

• 10T grid cells on BlueGene/Q
• Enabled by susbstanial CPU 

memory
• Nonlinear state-of-the-art 

numerics
• Time to solution ~ 1 month 

for meaningful time scales

Oct. 2024[3]

• 10T grid cells on OLCF 
Frontier

• Nonlinear state-of-the-art 
numerics

• Time to solution: hours to 
days

• CompressibleSep. 2024[2]

• 35T grid cells on OLCF 
Frontier

• Incompressible flow
• Time-to-solution dominated 

by all-to-all communication
• Time to solution: hours to 

days

Today

• 200T cells on OLCF Frontier
• 113T cells on LLNL El Cap
• 100T cells on JSC Jupiter
• Compressible flow solver
• Novel numerics
• Time to solution: hours to 

days



Summary of contributions

• Information geometric regularization foregoes nonlinear viscous shock 
capturing, enabling linear off-the-shelf numerical schemes and sequential 
summation of right-hand side contributions.
• Unified addressing on tightly coupled CPU–GPU and APU platforms increases 

total problem size with negligible performance hit.
• FP32 compute and FP16 storage further reduce memory use while remaining 

numerically stable, enabled by the algorithm’s well-conditioned numerics.
• Reduce memory footprint 25-fold over state-of-the-art. Improve time and 

energy-to-solution factors of 4 and 5.4, compared to an optimized 
implementation of state-of-the-art methods.
• First CFD simulation exceeding 200T grid points and 1 quadrillion degrees of 

freedom, improving on previous largest simulations by a factor of 20.
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How big is a quadrillion???
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•Model and numerical method
•Basic implementation details
•System-specific design
•Performance and results



Model and numerical method
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Navier-Stokes equations for a single fluid

Old solution method:
• High-order finite volume solver
• HLLC Riemann solver
• WENO spatial reconstructions
• Requires converting between 

conservative and primitive 
variables for stability 

• Expensive, nonlinear, and ill-
conditioned at lower floating-point 
precisions



Model and numerical method
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Navier-Stokes equations for a single fluid

New solution method (IGR):
• Add some terms to the equation
• Solve using linear numerics and in 

purely conservative variables



Benefits of IGR
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• Existing approach (LAD) yields 
solutions that are not smooth to 
higher orders
• Can lead to spurious 

oscillations at discontinuities 
and dissipation of oscillatory 
features

• IGR replaces shocks with high-
order smooth profiles to reduce 
oscillations near shocks and 
dissipation of oscillatory features

Credit: Cao and Schafer, 2024
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Solution overview
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3rd order SSP TVD Runge-Kutta

Elliptic solve for entropic pressure

RHS Calculation



•Model and numerical method
•Basic implementation details
•System-specific design
•Performance and results



Domain decomposition and 
communication
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~0.4% of domain

Block decomposition communication pattern

Nproc Proc Disc. Total (T)

128 4→ 4→ 8 0.340
384 8→ 8→ 6 1.02
1024 16→ 16→ 8 2.73
3072 16→ 16→ 12 8.18
8192 32→ 32→ 16 21.8
75264 48→ 49→ 32 200

Example max problem size decompositions



Storage and I/O
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restart data
P1

lusture 0.dat
lusture 100.dat
...

P2
lusture 0.dat
lusture 100.dat
...

...

1

Pros:
• Simple
• Fast
Cons:
• O(106) files for leadership 

scale simulation
• Lots of concurrent 

metadata creation



GPU programming landscape
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OpenMP OpenACC
Compiler NV GPUs AMD GPUs FP16 Atomics NV GPUs AMD GPUs FP16 Atomics

AMD ❌ ✅ ✅ ❌ ❌ ❌

CCE ✅ ✅ ❌ ✅ ✅ ❌

NVHPC ✅ ❌ ❓ ✅ ❌ ✅*

• Modern supercomputers are procured from two hardware vendors, so portability is 
important!

• OpenMP is generally better supported, but OpenACC is generally faster when the necessary 
features are available

• If we want the best performance we can get on all hardware we need to support everything



Portable GPU offload using directive 
based programming and macros
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Source code with macros 
OpenACC 

Code

OpenMP 
Code

Preprocessor 

• OpenMP and OpenACC are generated from one 
version of source code

• Developers don’t need in depth understanding of 
directive tools
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System Summary
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• All systems of interest are within the top 10 fastest computers measured by the HPL benchmark
• CSCS Alps is “little brother” to 6k node JSC Jupiter which is ranked 3rd now
• >95% of total system memory is used on El Capitan and Frontier
• >85% of total system memory is used on Alps

• Shared critical features:
• Ability to leverage unified address space between CPU and GPU
• High performance networking and leadership class scale



Tightly coupled GPU/APU architectures 
(AMD MI300A, LLNL El Capitan)
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• 24 Zen4 CPU cores 
bonded to 6 AMD XCD 
chiplets

• 4 APUs per node
• Memory is universally 

addressable in address 
space and physical space

• Zero host-to-device 
transfers to perform 
because the host and 
device are one

Credit:https://hpc.llnl.gov/documentation/user-guides/using-el-capitan-systems/hardware-overview



Tightly coupled GPU/APU architectures 
(AMD MI250X, OLCF Frontier)
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• 4 Mi250X GPUs (8 GCDs) 
connected to one CPU via 
36+36 GB/s links

• 1 CPU and 4 GPUs per 
node

• Each chip has its own 
memory

• Unified address space 
made possible through 
careful memory allocation 
and infinity fabric

Credit: https://docs.olcf.ornl.gov/systems/frontier_user_guide.html



Tightly coupled GPU/APU architectures 
(NVIDIA GH200, CSCS Alps)
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• Grace CPU and Hopper 
GPU connected via 900 
GB/s chip-to-chip (C2C) 
link

• 4 CPUs and 4 GPUs per 
node

• Each chip has its own 
memory

• Unified address space 
made possible via high-
speed interconnect, 
though memory regions 
are physically separate

Credit: https://docs.cscs.ch/alps/hardware/#nvidia-gh200-gpu-nodes



Unified memory strategy

CPU GPU
Chip-to-chip
interconnect

Tim
e

Alloc 𝐿2 Alloc 𝐿1

𝐿2 = 𝐿1
𝐿1 = 𝑀(𝐿1)

𝐿→ = 𝑁 (𝐿1)
𝐿1 = 𝑀(𝐿1, 𝐿2, 𝐿→)

𝐿→ = 𝑁 (𝐿1)
𝐿1 = 𝑀(𝐿1, 𝐿2, 𝐿→)
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MI250x - Allocate q2 on the 
using hipMallocManaged and 
advise runtime not to make 
device copy

GH200 – Allocate q2 and use 
cudaMemAdvise to keep 
memory on the host

MI250x - Allocate q1
 on the 

GPU using hipMalloc and 
advise runtime not to make a 
host copy

GH200 – Allocate q1 and pin 
memory with cudaMemAdvise

• GH200’s 900 GB/s link allows for storage of Σ and Σ!"# on the host as well, further 
increasing problem size
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Performance: Grindtime
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Grindtime • Baseline numerics unstable in lower precision
• AMD mixed precision slow due to using AMD’s 

beta compiler and a pre-release of NVHPC SKD 
25.9

• ~9% overhead in double precision on NVIDIA 
due to compiler regression

• <5% slowdown in single and mixed precision on 
NVIDIA thanks to 900 GB/s link

• 40-50% overhead in double and single 
precision on MI250x due to slower 36+36 GB/s 
link

• Up to 6x reduction in time to solutionNormalized by nanoseconds/grid cell/time step



Performance: Power
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Power

• Calculated by sampling nvidia-smi and 
rocm-smi to get a steady state wattage 
and then multiply by time

• Measured in in double precision for an 
apples-to-apples comparison

• Findings show power consumption is 
proportional to runtime as a first-order 
approximation

• GH200 uses more power with novel 
numerics than current state-of-the-art, 
but algorithm is faster



Performance: Strong scaling
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• 8-node base case does internode communication 
in all three physical dimensions

• Higher efficiency results in shorter time to 
solution for a given problem size

Strong Scaling Efficiencies



Performance: Weak scaling
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Number of Devices

• 16-node base case does internode 
communication in all three physical 
dimensions (and makes for nice spacing)

• Efficiencies are all approx. 100%

Weak Scaling Efficiencies



Results: Precision comparison
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FP16/FP32 FP32

FP64 FP64 (baseline numerics)

• FP64 and FP32 visually 
indistinguishable

• FP16/FP32 is visually 
different, though the main 
flow features are captured

• Numerical error leads to 
early onset of 
hydrodynamic instabilities

• FP64 baseline has grid 
aligned artifacts due to 
gird aligned shock 
capturing



Results: Super heavy booster 
configuration

• 3.3 trillion grid cells
• 16.5 trillion degrees of 

freedom
• 16 hours on 9200 GH200 

GPUs
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Lessons learned

• NVIDIA compilers are great, but they let you do a lot of things 
that aren’t in the standards, so supporting new compilers can 
be challenging
• Compiler support for directive-based programming with 

lower floating-point precisions is still developing
• Heterogenous architectures are cool and allow you to do 

some interesting things
• Doing something no one has ever done before is difficult and 

time consuming
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Questions?
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Code Preprint
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