
Design, development, and analysis of a 
compressible fluid dynamics solver capable of 
exceeding one quadrillion degrees of freedom

Ben Wilfong
Georgia Institute of Technology

October 8th, 2025



Collaborative effort

2

Nikolaos 
Tselepidis

Benedikt 
Dorschner

Reuben 
Budiardja

Brian 
Cornille

Stephen 
Abbott

Florian 
Schäfer

Anand 
Radhakrishnan

Daniel 
Vickers

Henry 
Le Berre

Tanush 
Prathi

Spencer 
Bryngelson

Acknowledgements
Scott Futral (LLNL)
Rob Noska (HPE)
Michael Sandoval (OLCF)
Mat Colgrove (NVIDIA)



Introduction

• Large arrays of small rockets are 
the new standard
• Interactions between nearby 

rockets produce new problems
• Simulation resolution is limited 

by available GPU memory
• More resolution = more rockets
• Existing tools for shock-laden 

flows are poorly conditioned at 
lower precision
• Lower precision and linear 

numerics are faster

3
Credit: SpaceX



Timeline of biggest CFD simulations

4

2013[1]

(GB Winner)

[1] Rossinelli et al. (2013) Proceedings of SC ’13
[2] Yeung et al. (2025) CPC
[3] Sathyanarayana et al. (2025) JPDC

• 10T grid cells on BlueGene/Q
• Enabled by susbstanial CPU 

memory
• Nonlinear state-of-the-art 

numerics
• Time to solution ~ 1 month 

for meaningful time scales

Oct. 2024[3]

• 10T grid cells on OLCF 
Frontier

• Nonlinear state-of-the-art 
numerics

• Time to solution: hours to 
days

• CompressibleSep. 2024[2]

• 35T grid cells on OLCF 
Frontier

• Incompressible flow
• Time-to-solution dominated 

by all-to-all communication
• Time to solution: hours to 

days

Today

• 200T cells on OLCF Frontier
• 113T cells on LLNL El Cap
• 100T cells on JSC Jupiter
• Compressible flow solver
• Novel numerics
• Time to solution: hours to 

days



Summary of contributions

• Information geometric regularization foregoes nonlinear viscous shock 
capturing, enabling linear off-the-shelf numerical schemes and sequential 
summation of right-hand side contributions.
• Unified addressing on tightly coupled CPU–GPU and APU platforms increases 

total problem size with negligible performance hit.
• FP32 compute and FP16 storage further reduce memory use while remaining 

numerically stable, enabled by the algorithm’s well-conditioned numerics.
• Reduce memory footprint 25-fold over state-of-the-art. Improve time and 

energy-to-solution factors of 4 and 5.4, compared to an optimized 
implementation of state-of-the-art methods.
• First CFD simulation exceeding 200T grid points and 1 quadrillion degrees of 

freedom, improving on previous largest simulations by a factor of 20.

5



How big is a quadrillion???

6



•Model and numerical method
•Basic implementation details
•System-specific design
•Performance and results



Model and numerical method

8

Navier-Stokes equations for a single fluid

Old solution method:
• High-order finite volume solver
• HLLC Riemann solver
• WENO spatial reconstructions
• Requires converting between 

conservative and primitive 
variables for stability 

• Expensive, nonlinear, and ill-
conditioned at lower floating-point 
precisions



Model and numerical method

9

Navier-Stokes equations for a single fluid

New solution method (IGR):
• Add some terms to the equation
• Solve using linear numerics and in 

purely conservative variables



Benefits of IGR

10

• Existing approach (LAD) yields 
solutions that are not smooth to 
higher orders
• Can lead to spurious 

oscillations at discontinuities 
and dissipation of oscillatory 
features

• IGR replaces shocks with high-
order smooth profiles to reduce 
oscillations near shocks and 
dissipation of oscillatory features

Credit: Cao and Schafer, 2024

𝐿
(𝑀
)

Exact LAD (current SoA) IGR (this work)

𝑀

𝐿
(𝑀
)

𝑀
(a) Shock problem (b) Oscillatory problem

(i
)

L
A

D
v
.

E
x
a
c
t

(i
i)

IG
R

v
.

E
x
a
c
t



Solution overview

11

3rd order SSP TVD Runge-Kutta

Elliptic solve for entropic pressure

RHS Calculation



•Model and numerical method
•Basic implementation details
•System-specific design
•Performance and results



Domain decomposition and 
communication

13

~0.4% of domain

Block decomposition communication pattern

Nproc Proc Disc. Total (T)

128 4→ 4→ 8 0.340
384 8→ 8→ 6 1.02
1024 16→ 16→ 8 2.73
3072 16→ 16→ 12 8.18
8192 32→ 32→ 16 21.8
75264 48→ 49→ 32 200

Example max problem size decompositions



Storage and I/O

14

restart data
P1

lusture 0.dat
lusture 100.dat
...

P2
lusture 0.dat
lusture 100.dat
...

...

1

Pros:
• Simple
• Fast
Cons:
• O(106) files for leadership 

scale simulation
• Lots of concurrent 

metadata creation



GPU programming landscape

15

OpenMP OpenACC
Compiler NV GPUs AMD GPUs FP16 Atomics NV GPUs AMD GPUs FP16 Atomics

AMD ❌ ✅ ✅ ❌ ❌ ❌

CCE ✅ ✅ ❌ ✅ ✅ ❌

NVHPC ✅ ❌ ❓ ✅ ❌ ✅*

• Modern supercomputers are procured from two hardware vendors, so portability is 
important!

• OpenMP is generally better supported, but OpenACC is generally faster when the necessary 
features are available

• If we want the best performance we can get on all hardware we need to support everything



Portable GPU offload using directive 
based programming and macros

16

Source code with macros 
OpenACC 

Code

OpenMP 
Code

Preprocessor 

• OpenMP and OpenACC are generated from one 
version of source code

• Developers don’t need in depth understanding of 
directive tools



•Model and numerical method
•Basic implementation details
•System-specific design
•Performance and results



System Summary

18

• All systems of interest are within the top 10 fastest computers measured by the HPL benchmark
• CSCS Alps is “little brother” to 6k node JSC Jupiter which is ranked 3rd now
• >95% of total system memory is used on El Capitan and Frontier
• >85% of total system memory is used on Alps

• Shared critical features:
• Ability to leverage unified address space between CPU and GPU
• High performance networking and leadership class scale



Tightly coupled GPU/APU architectures 
(AMD MI300A, LLNL El Capitan)

19

• 24 Zen4 CPU cores 
bonded to 6 AMD XCD 
chiplets

• 4 APUs per node
• Memory is universally 

addressable in address 
space and physical space

• Zero host-to-device 
transfers to perform 
because the host and 
device are one

Credit:https://hpc.llnl.gov/documentation/user-guides/using-el-capitan-systems/hardware-overview



Tightly coupled GPU/APU architectures 
(AMD MI250X, OLCF Frontier)

20

• 4 Mi250X GPUs (8 GCDs) 
connected to one CPU via 
36+36 GB/s links

• 1 CPU and 4 GPUs per 
node

• Each chip has its own 
memory

• Unified address space 
made possible through 
careful memory allocation 
and infinity fabric

Credit: https://docs.olcf.ornl.gov/systems/frontier_user_guide.html



Tightly coupled GPU/APU architectures 
(NVIDIA GH200, CSCS Alps)

21

• Grace CPU and Hopper 
GPU connected via 900 
GB/s chip-to-chip (C2C) 
link

• 4 CPUs and 4 GPUs per 
node

• Each chip has its own 
memory

• Unified address space 
made possible via high-
speed interconnect, 
though memory regions 
are physically separate

Credit: https://docs.cscs.ch/alps/hardware/#nvidia-gh200-gpu-nodes



Unified memory strategy

CPU GPU
Chip-to-chip
interconnect

Tim
e

Alloc 𝐿2 Alloc 𝐿1

𝐿2 = 𝐿1
𝐿1 = 𝑀(𝐿1)

𝐿→ = 𝑁 (𝐿1)
𝐿1 = 𝑀(𝐿1, 𝐿2, 𝐿→)

𝐿→ = 𝑁 (𝐿1)
𝐿1 = 𝑀(𝐿1, 𝐿2, 𝐿→)

22

MI250x - Allocate q2 on the 
using hipMallocManaged and 
advise runtime not to make 
device copy

GH200 – Allocate q2 and use 
cudaMemAdvise to keep 
memory on the host

MI250x - Allocate q1
 on the 

GPU using hipMalloc and 
advise runtime not to make a 
host copy

GH200 – Allocate q1 and pin 
memory with cudaMemAdvise

• GH200’s 900 GB/s link allows for storage of Σ and Σ!"# on the host as well, further 
increasing problem size



•Model and numerical method
•Basic implementation details
•System-specific design
•Performance and results



Performance: Grindtime

24

Grindtime • Baseline numerics unstable in lower precision
• AMD mixed precision slow due to using AMD’s 

beta compiler and a pre-release of NVHPC SKD 
25.9

• ~9% overhead in double precision on NVIDIA 
due to compiler regression

• <5% slowdown in single and mixed precision on 
NVIDIA thanks to 900 GB/s link

• 40-50% overhead in double and single 
precision on MI250x due to slower 36+36 GB/s 
link

• Up to 6x reduction in time to solutionNormalized by nanoseconds/grid cell/time step



Performance: Power

25

Power

• Calculated by sampling nvidia-smi and 
rocm-smi to get a steady state wattage 
and then multiply by time

• Measured in in double precision for an 
apples-to-apples comparison

• Findings show power consumption is 
proportional to runtime as a first-order 
approximation

• GH200 uses more power with novel 
numerics than current state-of-the-art, 
but algorithm is faster



Performance: Strong scaling

26

20
22
24
26
28

210
(a) El Capitan (MI300A)

S
p
e
e
d
u
p

Ideal Full System USM UVM

20
22
24
26
28

210
(b) Frontier (Trento+MI250X)

S
p
e
e
d
u
p

23 24 25 26 27 28 29 210 211 212 213 21420
22
24
26
28

210
(c) Alps (GH200)

Number of Nodes

S
p
e
e
d
u
p

• 8-node base case does internode communication 
in all three physical dimensions

• Higher efficiency results in shorter time to 
solution for a given problem size

Strong Scaling Efficiencies



Performance: Weak scaling

27

0

0.5

1

1.5

(a) El Capitan (MI300A)

Ideal Measured Full System

0

0.5

1

1.5

(b) Frontier (Trento+MI250X)

N
o

r
m

a
li

z
e
d

W
a
ll

T
im

e

102 103 104 105
0

0.5

1

1.5

(c) Alps (GH200)

Number of Devices

• 16-node base case does internode 
communication in all three physical 
dimensions (and makes for nice spacing)

• Efficiencies are all approx. 100%

Weak Scaling Efficiencies



Results: Precision comparison

28

FP16/FP32 FP32

FP64 FP64 (baseline numerics)

• FP64 and FP32 visually 
indistinguishable

• FP16/FP32 is visually 
different, though the main 
flow features are captured

• Numerical error leads to 
early onset of 
hydrodynamic instabilities

• FP64 baseline has grid 
aligned artifacts due to 
gird aligned shock 
capturing



Results: Super heavy booster 
configuration

• 3.3 trillion grid cells
• 16.5 trillion degrees of 

freedom
• 16 hours on 9200 GH200 

GPUs

29



Lessons learned

• NVIDIA compilers are great, but they let you do a lot of things 
that aren’t in the standards, so supporting new compilers can 
be challenging
• Compiler support for directive-based programming with 

lower floating-point precisions is still developing
• Heterogenous architectures are cool and allow you to do 

some interesting things
• Doing something no one has ever done before is difficult and 

time consuming

30



Questions?

31

Code Preprint

Acknowledgements


