#### Modeling of MANTA, a Point to Line Generator



Ben Wilfong WCI/WPD Kyle Sinding



LLNL-PRES-838326 This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC



## Plane wave generators are used to accelerate flyer plates for the measurement of dynamic material properties.





#### What is MANTA?





## The Lund programmed burn model yields results qualitatively similar to experimental results.











# The relative arrival times of the simulation match best near the centerline of the device.





#### Modifying the geometry such that path lengths differ changes the shock arrival profile, but edge effects remain similar.



**Original Geometry** 



**Modified Geometry** 





## Modifying the geometry such that path lengths remain the same changes the shock arrival time, but edge effects remain similar.







# Detonation shock dynamics theory provides an alternative, more advanced programmed burn model.

Node lighting times are determined by the level set equation

$$\frac{\partial \phi}{\partial t} + F(\kappa) |\nabla \phi| = 0$$

where the  $\phi = 0$  surface defines the detonation front. The velocity function,  $F(\kappa)$ , is

$$F(\kappa) = D_{CJ}(1 - \alpha \kappa),$$

where

$$\kappa = \nabla \cdot \left( \frac{\nabla \phi}{|\nabla \phi|} \right)$$

is the curvature of the  $\phi = 0$  surface and  $\alpha$  is a tunable parameter.





# Unfortunately, this model does not lead to improved results for a variety of model parameters.





## The material of the device has little effect on the detonation front.



Aluminum Body



Polycarbonate Body





#### Next Steps: Match the experimental results with the model.

<u>JWL++</u>

$$P = (1 - f)P_{unreacted} + fP_{reacted}$$
$$\frac{df}{dt} = G(P + Q)^b(1 - f)$$

- Two EOS model
- Less idealized than JWL

#### **Chemical Materials**

- Model the chemical reaction occurring in the high explosive
- Allows for the inclusion of intermediate reaction states
- May be able to incorporate density into reaction rate

#### Ignition and Growth

$$\frac{dF}{dt} = \frac{dF_{ignition}}{dt} + \frac{dF_{growth}}{dt} + \frac{dF_{completion}}{dt}$$

- Complicated two EOS model
- Intended for shock initiation of explosives
- Pressure dominated burn rate

**Density Dependent Burn Velocities** 

$$V(\rho) = \begin{cases} 3.19 + 3.7(\rho - 0.37), & \rho < 1.65\\ 7.92 + 3.05(\rho - 1.65), & \rho \ge 1.65 \end{cases}$$

 A non-reactive approach with a high barrier to implementation



## Next Steps: Explore the effects of piercing the detasheet as done in existing literature







#### Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor Lawrence Livermore National Security, LLC, nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or Lawrence Livermore National Security, LLC. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or Lawrence Livermore National Security, LLC, and shall not be used for advertising or product endorsement purposes.

#### References

- [1] K. Naeem and A. Hussain, "Development of a Matlab Code for Plane Wave Lens and its Validation by Autodyn-2D", Engineering, Technology & Applied Science Research, 8(6), 3614-3618, https://doi.org/10.48084/etasr.2415
  [2] D. H. Gipson, "Explosive Line Wave Generator", US Pat. US3242863A (1964),
  - https://patents.google.com/patent/US3242863A/en
- [3] John S. Morris, Scott I. Jackson, and Larry G. Hill, "A SIMPLE LINE WAVE GENERATOR USING COMMERCIAL EXPLOSIVES", AIP Conference Proceedings 1195, 408-411 (2009), https://doi.org/10.1063/1.3295158

