
The Rectilinear Steiner Tree Problem

Ben Wilfong

November 11, 2020

1 Introduction

The purpose of the minimum spanning Steiner tree problem is to minimize
the total rectilinear distance between a set of nodes by adding additional
”ghost nodes”. This minimization is often done with the intention of de-
creasing cost, which can be measured in many different ways, but is assumed
to be proportional to the total distance between nodes in the most basic
statement of the problem. For this analysis, we will require rectilinear dis-
tances, which are defined as,

d(p1, p2) = |x1 − x2|+ |y1 − y2|, where pi = (xi, yi).

By limiting the analysis to rectilinear distances and grid points, the prob-
lem becomes applicable to power plant and substation placement, cell tower
placement, and other interconnected local networks largely constrained by
the grids of cities and major roads. The problem is also applicable in elec-
trical and computer engineering for electronic component layouts.

2 Notation

The following notation is guided by Zachariasen [1]. The n terminals in the
plane we wish to connect will be collected in the set Z. In the rectilinear
Steiner tree problem, these terminals are connected to other terminals and
non-terminals via vertical and horizontal lines. There are three types of non-
terminals, corner points (where exactly two segments intersect), T-points
(where exactly three segments interest), and cross-points (where exactly four

1

3 HANAN GRIDS

segments intersect). The number of segments that meet at a point is also
refereed to as its order. Corner points, t-points, and cross-points have order
two, three, and four respectively. T-points and cross-points are also referred
to as Steiner points.

A line of segments is a sequence of one or more co-linear segments that meet
at a non-terminal node but do not share any terminal nodes. A line of
segments becomes a complete line when it is not properly contained in any
other line of segments.

A corner point c is the intersection of two perpendicular complete lines. A
complete corner at c is denoted (cu, cv), where cu and cv are the legs of the
corner.

3 Hanan Grids

The Hanan grid H(Z) for a set of points Z is the grid of horizontal and verti-
cal lines through each terminal in Z. The set IH(Z) is the set of intersections
in H(Z), which is on the order of n2 where n is the size of Z. Figure 1 shows
an example of a Hanan Grid. Hanan grids serve as a strong starting point
for exact solutions of the rectilinear Steiner tree problem.

An important result regarding Hanan grids is as follows:

Theorem 1: ”There exists a Steiner minimum tree for Z such that every
non-terminal node belongs to IH(Z).” [1]

Along with graph reduction in the Hanan grid, this theorem greatly decreases
the number of optional solutions that exact algorithms must check.

3.1 Graph Reduction in the Hanan Grid

One graph reduction specific to Hanan Grids is the convex-hull reduction
of Yang and Wing [2]. To apply this method, find a non-terminal node N
with exactly two orthogonal edges e1 and e2. If the two edges that form a
rectangle with e1 and e2 are present, the node N along with edges e1 and
e2 can be removed. In some instances, the convex-hull reduction may have
little effect, but for small random networks it typically reduces the grid quite

2

4 EXACT SOLUTIONS

well.

Further reduction can be achieved by removing second order non-terminal
nodes that lie along a set of co-linear segments, keeping the end node, and
replacing this set of segments with a single segment spanning its length. This
method will later be referred to as line-reduction.

Figure 1: Example of Line Reduction

4 Exact Solutions

4.1 Spanning Tree Enumeration

One of the first algorithms for the rectilinear Steiner tree problem (rephrased
as the graph Steiner tree problem) is the spanning tree enumeration algorithm
presented by Hakimi [2]. This method utilizes the fact that the cheapest
Steiner tree for a network with n terminal nodes never contains more than
n−2 non-terminal nodes [3]. This algorithm simply creates all subsets S of at
most n− 2 non-terminals in the Hanan Grid, computes a minimal spanning
tree of Z ∪ S, and takes the minimum of these to be optimal.

While this algorithm is rather inefficient, it has the advantages that it requires
no abstraction of the problem of interest. It is also guaranteed to yield an
exact solution while being simple to implement. Due to it’s inefficiencies,
the spanning tree enumeration method can only be used for networks with a
relatively small number of terminal nodes.

4.2 Dreyfus and Wagner

Drefus and Wagner’s algorithm is a dynamic programming algorithm based
on a decomposition theorem [2].

Theorem 2: ”An optimal Steiner tree of a set Z of terminals can be
decomposed into three subsets A, B, and v such that from some nonter-
minal vertex u, the union of the optimal Steiner tress of A∪u and B ∪u
and a shortest path from v to u is an optimal Steiner tree for Z.” [2]

3

5 COST

This algorithm considers all subsets of terminals and considers every decom-
position according to Theorem 1 [2]. By considering subsets of terminals
in increasing size, the small optimal Steiner trees needed for decomposition
have already been found and stored [2].

This algorithm is more efficient than the method of spanning tree enumera-
tion mentioned before. While it does require some slight abstraction and is
slightly more difficult to implement, its decrease in run time over spanning
tree enumeration make it one of the most popular methods used in prac-
tice. The decrease time complexity of this algorithm allows it to be applied
to networks with more terminal nodes, but it is still limited in comparison
to heuristic algorithms. Dreyfus and Wager’s algorithm is best suited for
relatively small network problems in which an exact solution is desired.

5 Cost

In the most basic rectilinear Steiner tree problem, cost is equal to the sum
of all distances in the minimum spanning tree, or a scalar multiple of this
quantity. One addition to this metric is to have a non-terminal node cost
daw, where d is the order of the non-terminal node and a and w are some
constants [3]. Another modification could be that cost is non-linearly propor-
tional to length. To relate this to application, a cable may need to be larger,
and hence more expensive per unit length, if the distance it must cover is
larger.

The methods presented in section four can both be easily modified to accom-
modate any set of these modifications. Instead of referencing the minimiza-
tion on the size of each minimum spanning tree, the lengths of each segment
or the degree of each non-terminal node, or any other cost metric, can be
passed to a function that adds up the total cost of the tree. Minimization
can then be made over this new cost function.

4

6 EXAMPLE

6 Example

The Hanan grid for the points

a(0, 15), b(5, 20), c(16, 24), d(20, 20), e(33, 25), f(23, 11),

g(35, 7), h(25, 0), i(10, 3),

is

y

x5 16 20 3323 352510

15

20

24

20

25

11

7

3

a

b

c

d

e

f

g

h
i

Figure 2: Hanan Grid

Reduction via the convex-hull method yields:

K

a

b

c

d

e

f

g

h
i

Figure 3: Results of Convex-Hull Reduction

5

6 EXAMPLE

The grid in Figure 3 can be further reduced by recognizing that the non-
terminal nodes in red can be line reduced. Furthermore, the subsets S of size
no more than |Z| − 2 can be reduced to only those subsets that contain non-
terminal node K. By inspection, it is necessary that this node is contained
in the set of non-terminal nodes S to connect the terminal nodes e and g to
the rest of the tree.

If it is assumed that stations are free, the optimal rectilinear Steiner tree for
this problem is:

a

b

c

d

e

f

g

h
i

Figure 3: Solution Neglecting Non-Terminal Node Cost.

The cost of this tree is 116. If we take into account a station cost of 1.2d
3
2 ,

we get the optimal rectilinear Steiner tree:

a

b

c

d

e

f

g

h
i

Figure 4: Solution Including Non-Terminal Node Cost.

6

7 CONCLUSION

The cost of this tree is 139.8. The cost of the solution optimized without
regard to non-terminal node cost in Figure 3 including non-terminal node cost
would be 140, only slightly greater than that of the tree in Figure 4 optimized
to include this cost. The cost of the tree in Figure 4 ignoring non-terminal
node cost is 117, only slightly more than that of the tree optimized to ignore
this cost in Figure 3. Interestingly enough, the inclusion of non-terminal
node cost does not play a large role in this application. However, in other
instances of the problem, it very well could. The MATLAB implementation
of the spanning tree enumeration algorithm used to find these solutions is
provided as Appendix B.

7 Conclusion

The rectilinear Steiner tree problem is highly applicable problem in applied
mathematics. Despite being an NP-Hard problem, exact solutions to small
networks can be found rather easily. For larger networks, approximations
through genetic programming and other heuristic methods are required.

7

A REFERENCES

A References

[1] X.Chen and D.Z. Du, Steiner Trees In Industry, Kluwer Academic
Publishers, (2001).

[2] J. Ganley, Computing Optimal Rectilinear Steiner Trees: A Sur-
vey and Experimental Evaluation, Discrete Applied Mathematics 90,
(1999).

[3] B. Fusary, 1991: The Steiner Tree Problem, (1991).

8

B MATLAB IMPLEMENTATION

B MATLAB Implementation

1 c l c ; c l e a r ; c l o s e a l l ;
2

3 %%% Terminal and Non- Terminal Nodes %%%
4 T = { [0 , 1 5] , [5 , 2 0] , [1 6 , 2 4] , [2 0 , 2 0] , [3 3 , 2 5] , [2 3 , 1 1] , [3 5 , 7] , [2 5 , 0] , [1 0 , 3] } ;
5 NT = { [5 , 1 5] , [1 0 , 7] , [1 0 , 1 1] , [1 0 , 1 5] , [1 0 , 2 0] , [1 6 , 3] , [1 6 , 7] , [1 6 , 1 1] , . . .
6 [1 6 , 1 5] , [1 6 , 2 0] , [2 0 , 3] , [2 0 , 7] , [2 0 , 1 1] , [2 0 , 1 5] , [2 3 , 3] , [2 3 , 7] , [2 5 , 3] , . . .
7 [2 5 , 7] , [3 3 , 7] } ;
8

9 %%% I n i t i l i z a t i o n s
10 de l = [0] ;
11 Cmin = 98754321;
12 Cmin2 = 987654321;
13 Amin = speye (3) ;
14 Amin2 = speye (3) ;
15

16 %%% Appl i ca t ion
17 f o r i =3: l ength (T) -2
18 %%% Create a l l subs e t s and f i l t e r other those not conta in ing (33 ,7)
19 c l e a r de l
20 Si = ce l l 2mat (nchoosek (NT, i)) ;
21 p=1;
22 f o r j = 1 : s i z e (Si , 1)
23 f o r k = 1 : 2 : s i z e (Si , 2)
24 i f ismember (33 , S i (j , k : k+1)) 6= 1 | | ismember (7 , S i (j , k : k+1)) 6=...

1
25 de l (p) = 1 ;
26 e l s e
27 de l (p) = 0 ;
28 end
29 end
30 p = p+1;
31 end
32 idx = f i nd (de l==1) ;
33 Si (idx , :) = [] ;
34 %%% Calcu la te the minium spanning t r e e f o r each subset
35 f o r i =1: l ength (S i)
36 C = 0 ;
37 nodes = [ce l l 2mat (T) , S i (i , :)] ;
38 nodes = reshape (nodes , [2 , l ength (nodes) / 2]) ;
39 A = speye (s i z e (nodes , 2) , s i z e (nodes , 2)) ;
40 f o r j =1: s i z e (nodes , 2)
41 f o r k=1: s i z e (nodes , 2)
42 i f nodes (1 , j) == nodes (1 , k) | nodes (2 , j) == nodes (2 , k)
43 A(j , k) = 1 ;
44 e l s e
45 A(j , k) = 0 ;
46 end
47 end
48 end
49 [t r ee , pred] = graphminspantree (A) ;
50 i f any (i snan (pred))
51 a=2;

9

B MATLAB IMPLEMENTATION

52 e l s e
53 f o r i = 1 : s i z e (t ree , 2)
54 f o r j = 1 : i
55 i f t r e e (i , j) == 1
56 O = t r e e + tree ' ;
57 Corder = sum(O(10:end , :) * ones (s i z e (A, 2) ,1) . ˆ . . .
58 (3/2)) *1 . 2 + sum(O(1 : 9 , 1 : 9) * ones (9 , 1) . ˆ . . .
59 (3/2)) *1 . 2 ;
60 C = C + abs (nodes (1 , i) - nodes (1 , j))+ . . .
61 abs (nodes (2 , i) - nodes (2 , j)) ;
62 C2 = C + Corder ;
63 end
64 end
65 end
66 %%% Compare aga in s t prev ious best
67 i f C < Cmin
68 Cmin = C;
69 Amin = t r e e ;
70 Nmin = nodes ;
71 end
72 i f C2 < Cmin2
73 Cmin2 = C2 ;
74 Amin2 = t r e e ;
75 Nmin2 = nodes ;
76 end
77 end
78 end
79 end

10

